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(c)	3D	city	with	diverse	styles(a)	Satellite input (b) Enhanced	geometry	&	textures

“High-density 
commercial district.

A modern building 
with flat roof and 
blue appearance…”

Figure 1: Overview of our CitySculpt framework. (a) Given satellite imagery as input, we first perform multi-scale scene
understanding; (b) then, we design a diffusion-based network to generate high-quality 3D objects despite the limited information
from satellite views; (c) finally, these objects are assembled into complete 3D cities with diverse styles.

Abstract
Generating 3D cities from satellite imagery opens up new av-
enues for gaming, urban planning, and cinematic production. How-
ever, the limited information from satellite views presents signifi-
cant challenges, hindering existing methods from generating high-
quality cities that meet application standards. To address these chal-
lenges, we propose CitySculpt, a UV diffusion-based framework for
generating 3D cities with high-fidelity geometry and photorealistic
textures. Specifically, we first generate the detailed 3D geometries
by refining coarse structures using a UV normal diffusion network.
Building on these refined geometries, we introduce a texture gen-
eration approach that produces photorealistic textures despite the
limited satellite information. To ensure style consistency across
multiple objects, we design a cross-attention mechanism that en-
ables feature sharing among them. Additionally, we contribute the
CitySculpt dataset, a collection of high-quality 3D urban assets
with multi-view renderings and comprehensive annotations to ad-
vance research in 3D city generation. Experiments demonstrate
that CitySculpt outperforms state-of-the-art approaches in both
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generating detailed individual buildings and creating cities with
high visual quality and rich architectural details.
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1 Introduction
City generation is gaining traction in gaming [10, 25], autonomous
driving simulation [8, 28], and cinematic production [33, 37]. A
particularly effective approach is generating 3D cities directly from
satellite imagery, as it enables the efficient creation of large-scale
urban environments without the labor-intensive process of layout
design or manual modeling. However, this task remains challenging,
as satellite perspectives provide limited information, making it
difficult for prior methods [14–16, 37, 38] to generate high-quality
geometries and textures that meet application standards.

In recent years, notable advancements [3, 5, 11, 14, 16, 37, 38, 40]
in 3D city generation have been made. They typically follow a
common process: satellite imagery is first processed to extract
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semantic and height maps. The 3D geometry is then constructed
by lifting each pixel from the 2D map to the corresponding height
according to the height map. Afterward, they generate texture
algorithms are applied to generate textures on the 3D geometry.
However, these approaches produce buildings with flat surfaces,
lacking architectural details such as windows or balconies. This
significantly limits their visual realism and applicability.

While 3D asset generation [7, 12, 24, 31, 35, 36, 39, 41, 42] has
garnered significant attention for its ability to create photorealistic
objects such as avatars, toys, and furniture. It is therefore tempting
to adopt these techniques for city generation. However, this inte-
gration faces several challenges. Satellite imagery provides only
limited information from a top-down perspective, posing significant
difficulties for generating high-quality buildings with architectural
details. More importantly, buildings within the same urban area
are often interconnected in style, yet current approaches cannot
guarantee stylistic consistency across them. This is because these
methods focus solely on generating individual buildings, making
them unsuitable for city-scale generation.

To address the aforementioned issues, we propose CitySculpt, a
diffusion-based framework designed for 3D city generation with
rich geometric details and photorealistic visual quality. As shown in
Figure 2, taking satellite imagery as input, we first extract scene
characteristics at multiple scales and initialize the coarse 3D ge-
ometry. To enhance geometric details, we propose a refinement
approach that improves the 3D geometry by generating high-quality
UV normal maps. With the refined geometry, our texture diffusion
model generates realistic textures despite the limited information
available from satellite perspectives. To maintain stylistic consis-
tency during the multi-object generation process, we introduce
a cross-attention mechanism that enables feature sharing across
buildings. In addition, we contribute the CitySculpt dataset, a collec-
tion of 5,000 high-quality 3D urban assets with multi-view render-
ings and semantic annotations to support urban-scale generation
tasks.

The key contributions are as follows:
• We propose CitySculpt, a UV diffusion-based framework

for generating cities with rich geometric details and photo-
realistic visual quality from satellite imagery.

• We propose a novel geometry refinement approach that
optimizes coarse geometries by generating detailed UV
normal maps.

• We develop a texture generation approach that produces
photorealistic textures from limited satellite perspectives,
whilemaintaining stylistic consistency acrossmultiple build-
ings through our cross-attention mechanism.

• We present the CitySculpt dataset, a comprehensive col-
lection of high-quality 3D urban assets with multi-view
renderings and semantic annotations to facilitate research
in city-scale 3D generation.

2 Related Works
2.1 3D City Generation.
Recent approaches have made significant progress in 3D city scene
generation, which can be broadly categorized into two groups:
layout-based methods and procedural methods.

3D layout-based methods first construct 3D layouts from satellite
semantic maps and height fields, then generate textures on these
structures. InfiniCity [16] pioneered this framework by construct-
ing Octree-based voxels from satellite data, then employing neural
rendering with a SPADE generator for texture synthesis. Building
upon this foundation, CityGen [5] improved layout diversity by
introducing a multi-scale diffusion model for semantic map gener-
ation. Subsequently, CityDreamer [37] proposed a compositional
approach that separates building instances from background ele-
ments through 3D GAN training on Google Earth data to generate
volumetric renderings. Most recently, GaussianCity [38] further
enhanced this approach by leveraging Gaussian splatting represen-
tation to improve rendering efficiency and visual quality, extending
city generation to unbounded scales. However, a common limi-
tation of these methods is that buildings often lack geometric
detail. This is due to their structures being directly lifted from
depth maps, resulting in flat surfaces without architectural features
and diminished visual realism.

Procedural-based methods generate urban environments by col-
lecting high-quality 3D object assets and assembling them according
to specific rules to create complete 3D cities. These approaches can
produce higher quality urban scenes than 3D layout-based meth-
ods due to the superior quality of individual assets. CityCraft [6]
exemplifies this approach by using large language models as city
planners, analyzing satellite imagery to guide urban element allo-
cation based on real-world planning principles. Building on this
approach, CityX [44] and SceneX [46] implement a multi-agent
framework that coordinates various procedural content genera-
tion modules through a management protocol, transforming user
descriptions and multimodal inputs into executable programs for
urban scene construction. Similarly, ProcGS [13] integrates pro-
cedural code with 3D Gaussian Splatting to efficiently generate
buildings with repeated architectural elements while maintaining
visual fidelity. However, these approaches are limited by their re-
liance on existing asset collections, restricting their ability to
generate novel architectural styles.

2.2 3D Assets Generation.
3D asset generation has received significant attention for its ability
to create photorealistic 3D objects such as avatars, furniture, toys,
and more. Current approaches can be broadly categorized into two
types: image-guided methods and UV map-based methods.

Early image-to-3Dmethods focused on single-view generalization[2,
4, 19, 22, 23, 45]. DreamFusion [24] adapted 2D diffusion priors to
optimize 3D representations, producing high-quality results but
requiring extensive computation time. CRM [35] adopted a feed-
forward approach to efficiently generate high-fidelity 3D models
from single images by integrating geometric priors into its convo-
lutional architecture. However, these approaches face limitations
in handling complex occlusions and diverse object geometries. To
address single-view limitations, multi-view generation methods
have emerged[17, 18, 29, 30, 32]. InstantMesh [39] combines multi-
view diffusion models with sparse view reconstruction techniques,
optimizing geometric consistency for efficient single-image to 3D
model conversion. Hi3D [41] reformulates multi-view generation

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

CitySculpt: 3D City Generation from Satellite Imagery with UV Diffusion Conference acronym ’XX, June 03–05, 2025, Dublin, Ireland

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

as an orbital video generation problem, improving accuracy in gen-
erating view-consistent images with high-resolution texture details.
Beyond texture generation, some works enhance geometry through
normal maps, such as CraftsMan [12], which employs normal map
refinement as post-processing, and Trellis [36], which incorporates
normal rendering constraints during VAE training.

UV map-based methods offer the advantage of generating only a
single texture image rather than multiple views, resulting in faster
processing. Texturify [31] uses GANs to generate realistic textures
directly on 3D surfaces, learning from real images without requiring
3D color supervision or shape-image correspondence. PointUV [42]
introduces a coarse-to-fine approach combining point diffusion and
UV diffusion, first generating a basic texture through point sampling
before refining it with UV diffusion. UV3-TeD [7] introduce a UV-
free alternative that represents textures as colored point clouds on
mesh surfaces, employing denoising diffusion and geodesic heat
propagation to eliminate common UV mapping issues like seams
and distortions.

Despite these advances, these approaches typically require sub-
stantial information about target 3D assets, limiting their applica-
bility in minimal-input scenarios. Additionally, when generating
scene-level content withmultiple objects, these methods struggle
to maintain stylistic consistency across different elements.

3 Methods
Figure 2 shows an overview of our CitySculpt framework. Given a
satellite image 𝐼 , we first predict its semantic map, depth map, and
density map. This is followed by multi-scale scene understanding
and initialization of the coarse 3D city geometry (Section 3.1). After
that, we unwrap the objects into UV space, where geometric details
are refined using the proposed UV-space normal diffusion model
(Section 3.2). Based on this, we introduce a texture diffusion model
that generates high-quality textures despite the limited informa-
tion from the satellite view. The textures are generated in parallel,
with cross-attention enabling texture sharing to maintain stylistic
consistency across buildings (Section 3.3). Finally, we incorporate
background generation (Section 3.4) to enhance the completeness
of the scene.

3.1 Multi-scale Scene Understanding and
Geometric Initialization

Effective understanding and encoding of input information serve
as prerequisites for generating high-quality results, especially with
satellite imagery where top-down views provide limited informa-
tion. Given a satellite image 𝐼 , we propose a multi-scale scene under-
standing framework to extract visual and semantic characteristics
while constructing an initial coarse 3D geometric structure. This
information serves as the foundation for subsequent generation
processes.

Multi-scale Feature Extraction Our framework simultane-
ously analyzes the scene at region and instance levels:

At the region level, we first compute a density map 𝐷𝑖 through
kernel density estimation to identify functional urban zones:

𝐷𝑖 =
∑︁
𝑗

𝑘 (p − p𝑗 ) (1)

where 𝑘 represents a Gaussian kernel and p𝑗 denotes building loca-
tions. Based on this density distribution, we partition the scene into
𝑁 regions {𝑅𝑖 }𝑁𝑖=1 using watershed segmentation. For each region,
we extract semantic descriptors 𝑇𝑖 = CLIP(𝑅𝑖 ) using CLIP [26]
to characterize urban patterns such as "high-density commercial
district".

At the instance level, we analyze individual urban structures by
jointly considering their visual information and height data. For
each instance 𝑗 in region 𝑖 , we first derive its visual and semantic
characteristics using CLIP (e.g., “blue modern building”). These
features are then fused with height information to enhance archi-
tectural traits (e.g., “flat roof”). Specifically, we design the height
feature extractor 𝜔 (·) to map the height map 𝐻𝑖, 𝑗 to architectural
feature descriptors, including roof geometry and vertical propor-
tions.

Formally, the instance-level feature is defined as:

𝑡𝑖, 𝑗 = CLIP(instance𝑖, 𝑗 ) ⊕ 𝜔 (𝐻𝑖, 𝑗 ) (2)

Finally, we organize the multi-scale information into a unified
feature representation, denoted as 𝑇scene. This consists of regional
features 𝑇𝑖 and instance-level features 𝑡𝑖, 𝑗 , where each instance
feature 𝑡𝑖, 𝑗 is grouped within its corresponding region 𝑇𝑖 :

𝑇scene =
{
𝑇𝑖 , {𝑡𝑖, 𝑗 }𝑁𝑖

𝑗=1

}𝑁
𝑖=1

(3)

3DCoarseGeometryGeneration.To generate an initial coarse
3D representation of the scene, we follow an approach similar to
CityDreamer [37]. For each instance 𝑗 with a depth map 𝐻 𝑗 and a
semantic mask 𝑆 𝑗 , we project the pixels into 3D space using their
corresponding depth values:

𝐺 𝑗 = {(𝑥,𝑦, 𝐻 𝑗 (𝑥,𝑦)) | (𝑥,𝑦) ∈ 𝑆 𝑗 } (4)

Here, each point (𝑥,𝑦, 𝑧) represents a 3D coordinate, where 𝑧 =

𝐻 𝑗 (𝑥,𝑦) is the depth value, and each point retains its semantic
label. Next, we construct the initial 3D mesh 𝑀𝑗 using Poisson
surface reconstruction, which provides a coarse geometric model
that serves as the foundation for further refinement.

3.2 UV-space Geometry Refinement
Motivation.While the coarse 3D geometry in Section 3.1 provides
the basic geometric representation of the urban structure, it suffers
from flat surfaces with minimal architectural details. Unlike previ-
ous works that directly generate textures on these flat geometries,
we propose a refinement approach that uses a diffusion model to
generate detailed UV normal maps to enhance surface geometry.

UV Normal Diffusion. As shown in Figure 2, for each object in
the scene, we first unwrap its mesh to obtain a coarse UV normal
map 𝑥coarse. By designing 𝑁1, our goal is to generate detailed UV
normal maps 𝑥0 from Gaussian noise 𝑧𝑡 under the constraint of
condition 𝑐1. The formulation of our diffusion model is as follows:

𝑥0 = 𝑁1 (𝑥𝑡 , 𝑡, 𝑐1) (5)

To address discontinuity issues in UV space, we introduce a
condition vector c that integrates three key information sources:

𝑐1 = {𝛾 (𝑥coarse),𝜓 (𝑥shape), 𝜙 (𝑡obj)} (6)
3
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Block1:
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Texture	Diffusion

Normal	Map

Texture	MapCoarse	3D	City	Geometry

Building	1:

Sky	Generation Ground	Generation

“a	modern	build-
ing	” “flat	roof	”
“blue	appear-

ance	”

“High-density	com
-mercial	district”

𝜙

𝜙

Stage	2	UV	space	Geometry	Refinement	

Stage	3	Region	consistent	Texture	GenStage	1	Scene	Understanding	&	Initialization Stage	4	Background	Gen

UV	Normal	Diffusion

Other	buildings

Satellite	Input

Figure 2: Overview of CitySculpt. Given a satellite image, we first perform multi-scale scene understanding and initialize a
coarse 3D city geometry. Building upon this, the second stage refines the initial geometry by generating high-fidelity UV maps
using our UV-Normal diffusion method. The third stage further enhances visual realism by synthesizing photorealistic textures
while maintaining style consistency across buildings. Finally, the textured buildings are assembled into a complete city scene,
including sky and ground generation.

The initial normal map 𝑥coarse contains orientation informa-
tion and is encoded by the normal encoder 𝛾 (·). The shape map
𝑥shape = [𝑥coord, 𝑥boundary] captures structural information, with
𝑥coord mapping 3D coordinates to UV space and 𝑥boundary marking
seam locations. We encode it through our boundary feature encoder
𝜓 (·). Additionally, object-level semantic features 𝑡obj, extracted
from the multi-scale representation 𝑇 in stage 1, are processed
through the text encoder 𝜙 (·). All these feature embeddings are
injected into each UNet block through a cross-attention mechanism.
The geometric features 𝛾 (𝑥coarse) and𝜓 (𝑥shape) are trainable, en-
abling the model to learn and refine representations of architectural
geometry effectively.

The optimization objective combines three components:

𝐿 = ∥𝜀 − 𝜀𝜃 ∥2 + 𝜆1𝐿unit + 𝜆2𝐿cont (7)

where the first term is the standard diffusion loss that predicts the
added noise, 𝐿unit = ∥|𝑛̂ |2 − 1∥2 enforces the unit vector constraint
on generated normals, and 𝐿cont = ∥𝑛̂boundary1 − 𝑛̂boundary2 ∥

2 min-
imizes discontinuities at UV seams by aligning normals at cor-
responding boundary locations. The hyperparameters 𝜆1 and 𝜆2
balance these objectives to produce geometrically valid and visually
coherent normal maps.

3.3 Region-consistent Texture Generation
Motivation. While existing texture generation methods are effec-
tive at producing detailed textures for individual 3D assets, they
face two major challenges in urban-scale scenarios. First, satellite
imagery provides limited visual information due to its top-down
perspective, lacking details on building façades and materials. More
importantly, these methods struggle to maintain stylistic consis-
tency across buildings, as they treat each one independently during
texture generation.

To address these challenges, we design a diffusion-based network
that generates high-quality textures by leveraging the multi-modal
information extracted in Section 3.1 . In addition, we incorporate
a cross-attention mechanism that enables parallel texture genera-
tion for buildings within the same region while facilitating style
information sharing among them.

Model Architecture. Our goal is to generate high-quality tex-
tures 𝑦0 for each building by denoising a noisy input 𝑦𝑡 under the
guidance of structured conditional information. This is formulated
as:

𝑦0 = 𝑁2 (𝑦𝑡 , 𝑡, 𝑐2) (8)
To fully exploit the limited information available from satellite

imagery, we design the conditioning vector 𝑐2 from three compo-
nents:

𝑐2 = {𝜓 (𝑦shape), 𝜙 (𝑇𝑟 ), {𝐹 𝑙 }} (9)
where the geometric features𝑦shape = [𝑥shape, 𝑥normal] are formed

by concatenating the geometry representation 𝑥shape and the de-
tailed normal map 𝑥normal from Section 3.2 . We encode 𝑦shape
using the same geometry encoder𝜓 (·), which is trainable during
the training process. In addition, to ensure stylistic consistency
across buildings within the same region, we encode the region-
level feature 𝑇𝑟 using the region encoder 𝜙 (·)as a control signal.
We also design a parallel diffusion architecture that allows feature
sharing across buildings within the same region, where {𝐹 𝑙 } de-
notes intermediate feature embeddings from other buildings in the
region.

Cross-branch Feature Sharing Mechanism. The key to our
region-consistent generation lies in the interaction between differ-
ent generation branches within the same region. Instead of gener-
ating each building’s texture independently, we enable information
exchange through a cross-attention mechanism. In each diffusion

4
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block, after processing the individual building features, we fuse
them as follows:

𝐹 ′𝑖 = 𝐹𝑖 +𝜓 (𝑦shape) + 𝜙 (𝑇
𝑟
) (10)

where 𝐹𝑖 denotes the original feature embedding of building 𝑖
and 𝐹 ′

𝑖
is the fused feature representation. We then apply cross-

attention across all buildings in the region:

𝑀𝑖 =
∑︁
𝑙≠𝑖

softmax(𝑊𝑄𝐹
′
𝑖 · (𝑊𝐾𝐹

′
𝑙
)𝑇 )𝑊𝑉 𝐹 ′𝑙 (11)

Here,𝑊𝑄 projects the current building’s features 𝐹 ′
𝑖
into the

query space,𝑊𝐾 projects the features 𝐹 𝑙 from neighboring build-
ings in the same region into the key space, and𝑊𝑉 projects the
same features into the value space. This cross-attention mechanism
computes a weighted sum of the neighboring features based on the
similarity between the query and key, allowing each building to
selectively attend to relevant style features from nearby buildings
while preserving its own geometric properties as defined by 𝐹 ′

𝑖
.

Finally, the multi-building training objective is defined as:

𝐿 = E{𝑦𝑡 },𝜀𝑖 ,𝑡

[
𝑁∑︁
𝑖=1

∥𝜀𝑖 − 𝜀𝑖𝜃 ({𝑦𝑡 }, 𝑡, 𝑦shape, 𝐹region𝑟 )∥
2
]

(12)

3.4 Background Generation
After generating detailed building geometries and textures, we
complete the urban scene by synthesizing realistic sky and ground
elements. As shown in Figure 2, our approach handles these envi-
ronmental components differently based on their characteristics
and requirements.

Sky Generation. For sky generation, we directly finetune the
LDM [27] to produce realistic atmospheric conditions. For con-
sistent scene illumination, we extract directional light parameters
from the generated sky and apply a dual-component lighting model:
one accounting for light incidence angles on surfaces and another
handling shadow mapping based on light visibility calculations.

Ground Generation. For ground surfaces, we adopt a semantic-
guided strategy to generate context-aware textures. Given the se-
mantic map, we first identify different functional zones (e.g., roads,
parks, plazas) and then apply appropriate textures accordingly:

𝐺ground = Γ(𝑆ground,𝑇region) (13)

where 𝑆ground is the semantic segmentation of ground areas
and 𝑇region represents region-specific style features. Our texture
generator Γ processes each semantic region in parallel, efficiently
generating composite ground textures while preserving scene con-
sistency.

4 Experiments
4.1 Dataset
CitySculpt Dataset To the best of our knowledge, there is cur-
rently no open-source dataset providing high-quality 3D city assets
suitable for urban-scale generation. To address this gap, we con-
structed the CitySculpt dataset, consisting of approximately 5,000
high-quality 3D assets of urban elements, including buildings, vehi-
cles, roads, street lights, and vegetation. These assets were collected

from online open resources 1 and processed to ensure consistent
quality. To enhance the dataset’s versatility, we performed size nor-
malization on all models and annotated each asset with semantic
category, dimensions, and descriptive attributes of function and
style. For each asset, we rendered 9 multi-view images from three
viewpoint categories: 3 overhead satellite perspectives (0°-15° from
vertical), 3 drone-view angles (30°-45° from vertical), and 3 ground-
level views (75°-90° from vertical). These viewpoints are positioned
at 120° intervals along circular trajectories at different elevations.
More details about the CitySculpt dataset can be found in supple-
mentary material.

OSMDataset. Following CityDreamer [37], we utilize the Open-
StreetMap (OSM) dataset2 for additional testing and evaluation.
This dataset comprises satellite imagery from 80 cities worldwide,
with corresponding semantic maps that classify areas into five cat-
egories (roads, buildings, green lands, construction sites, and water
areas) and height fields derived fromOSM data. For each geographic
location in the dataset, corresponding 3D city models can be ac-
cessed via Google Earth Studio3, offering real-world references for
qualitative comparison. This dataset serves as a benchmark for
evaluating the city generation capabilities of our method.

4.2 Satellite-view Mesh Generation
Metrics. To evaluate our single-view mesh generation results, we
assess both geometric and texture quality:

Geometric Quality: Following [41], we employ Chamfer Distance
(CD) and Volume IoU between generated and ground-truth meshes.
CD quantifies surface accuracy by measuring bidirectional point-
wise distances, while Volume IoU assesses 3D spatial overlap, pro-
viding complementary insights into shape fidelity.

Texture Quality: For evaluating texture fidelity, we render the tex-
tured models to 2D images from multiple viewpoints and compute
PSNR, SSIM[34], and LPIPS[43] against ground-truth renderings.
These metrics collectively assess pixel-level accuracy, structural
similarity, and perceptual quality.

Baselines.We compare CitySculpt against state-of-the-art condi-
tional mesh generation methods: Craftsman [12], InstantMesh [39]
and CRM [35]. All methods are retrained using our CitySculpt
dataset to ensure fair comparison. For evaluation, we randomly
select 300 building assets from our test set and use their satellite
views as input.

Qualitative Comparison. Figure 3 presents a qualitative com-
parison against the baseline methods. Given the satellite perspec-
tives as input, CRM struggles to generate accurate geometric struc-
tures of buildings, even though the texture generation is relatively
accurate. InstantMesh successfully generates complete geometric
structures with reasonably accurate texture colors, but occasion-
ally produces inaccurate building shapes. We hypothesize this is
due to the limited texture information available from the satellite
view inputs. Craftsman produces accurate geometric structures
with surface materials that closely resemble those used in real-
world buildings. However it fails to generate coherent textures for
elements such as windows and wall surfaces.

1https://sketchfab.com
2https://openstreetmap.org
3https://earth.google.com/studio/
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Figure 3: Qualitative comparison. Given satellite images from the real world, our method generates higher-quality buildings in
both geometry and texture compared to baseline methods.

In contrast, our method accurately reconstructs building geom-
etry while preserving key architectural details like balconies and
windows. Regarding texture quality, our approach also generates
textures that faithfully match the appearance of the satellite im-
agery, resulting in more photorealistic buildings.

Quantitative Comparison. Table 1 presents the quantitative
metrics of the proposed approach compared to the baselines. Our
method demonstrates significant improvements on geometric met-
rics, achieving the best performance on CD and Volume IoU. More-
over, we attain state-of-the-art results on visual metrics including
PSNR and SSIM, demonstrating our approach’s ability to gener-
ate high-fidelity building models with accurate textures. While
our LPIPS score ranks second to InstantMesh, the comprehensive
results across all metrics confirm our method’s superior overall per-
formance in generating both geometrically accurate and visually
realistic building reconstructions.

4.3 City Generation
Metrics.We evaluate city-scale generation quality using comple-
mentary metrics that assess both geometric accuracy and visual
quality:

Table 1: Quantitative comparison with baselines in building
generation.

Methods CD↓ Volume IoU↑ PSNR↑ SSIM↑ LPIPS↓
CRM 0.3063 0.3819 23.420 0.7636 0.2160
InstantMesh 0.2461 0.4430 24.852 0.8039 0.1705
Craftsman 0.2134 0.5821 22.965 0.8322 0.2204
Ours 0.2016 0.6206 25.071 0.8710 0.1793

Geometric Quality: Following CityDreamer [37], we employ Cam-
era Error (CE) and Depth Error (DE) to evaluate the generated urban
layouts. CE measures how accurately the generated city covers the
reference distribution of building arrangements, while DE quanti-
fies the diversity of generated structures compared to the reference
dataset.

Texture Quality: For visual assessment, we compute Fréchet In-
ception Distance (FID) [9] and Kernel Inception Distance (KID) [1]
between rendered frames and their ground truth images. These met-
rics measure both the distribution similarity and perceptual quality
of our generated 3D assets. Additionally, we utilize no-reference
image quality metrics BRISQUE [20] and NIQE [21] to evaluate the
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Table 2: Quantitative comparison with baselines in city generation.

Method CE ↓ DE ↓ FID ↓ KID ↓ NIQE ↓ BRISQUE ↓
CityDreamer 0.064 0.105 98.39 0.095 8.507 86.702
GaussianCity 0.061 0.093 87.03 0.089 7.687 75.340
Ours 0.043 0.047 53.96 0.063 5.132 53.960
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Figure 4: Qualitative comparison. Our method produces higher-quality 3D cities with better consistency compared with the
baselines. We strongly recommend zooming in to examine the detailed differences.

perceptual quality of rendered frames, following standard practices
in urban visualization evaluation.

Baselines. We compare CitySculpt against state-of-the-art city
generation approaches including InfiniCity [16], CityDreamer [37],
GaussianCity [38] and Proc-GS [13]. For evaluation, we randomly
select 512 satellite images from OpenSatMap as test inputs. To en-
sure fair comparison, we process these images using each method’s
official released code with their default parameters. Each generated
3D city is then rendered from 40 different viewpoints to produce
20,480 result images for evaluation. For InfiniCity and Proc-GS we

use the results provided by the authors as their code is not publicly
available.

Qualitative Comparison. Figure 4 presents qualitative compar-
isons against several baselines. InfiniCity fails to generate complete
structures, with the resulting buildings and roads showing shape
defects and distortions. CityDreamer improves the overall scene in-
tegrity by directly generating textures on the 3D volume. However,
the generated buildings are flat, lacking architectural details such
as balconies and windows. GaussianCity enhances texture details
using a Gaussian-based approach, but still suffers from the absence
of essential geometric features. ProcGS reconstructs high-quality
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buildings and assembles them into scenes, significantly improving
visual quality. However, it lacks stylistic diversity, offering only a
limited range of architectural styles.

In contrast, CitySculpt generates more realistic building struc-
tures, including windows, roofs, and other architectural details,
avoiding the box-like shapes produced by baseline methods. More-
over, our method offers greater stylistic diversity with photorealistic
textures that enhance visual fidelity across the generated cities.

Quantitative Comparison. Table 2 presents a quantitative com-
parison between our proposed method and the baseline methods.
Our method shows significant improvements in both FID and KID,
demonstrating superior texture generation quality. Additionally,
CitySculpt achieves state-of-the-art results in NIQE and BRISQUE,
further validating its effectiveness in generating high-quality and
realistic textures. In terms of geometric evaluation, our method
achieves the lowest DE and CE, proving its superior geometric
accuracy and ability to generate detailed 3D structures.

4.4 Ablation Studies
To validate the effectiveness of our key components in city gen-
eration, we conduct ablation studies using 50 randomly selected
satellite images from the OSM dataset.

Effectiveness of Multi-scale Scene Understanding. Multi-
scale scene understanding helps leverage the limited information
provided by satellite imagery by extracting multi-scale textual char-
acteristics. To assess its impact, we compare our approach with
two baselines: one that removes multi-scale scene understanding
and only uses RGB images as input (RGB-Only), and another that
extracts features from the entire satellite image without performing
multi-scale analysis (Single-Scale). All other components remain
unchanged during retraining.

The evaluation metrics include Camera Error (CE), Depth Error
(DE), NIQE, and BRISQUE. The results are summarized in Table
3, showing the impact of multi-scale scene understanding on key
metrics.

Table 3: Ablation study results for the effectiveness of multi-
scale scene understanding in city generation.

Method CE ↓ DE ↓ NIQE ↓ BRISQUE ↓
RGB-Only 0.074 0.112 6.324 72.564
Single-Scale 0.061 0.091 5.876 68.903
Ours 0.043 0.047 5.132 53.960

Effectiveness of Geometry Refinement. We utilize the UV
normal diffusion framework to refine the geometry of buildings. To
evaluate the effectiveness of our method, we compare our results
with Craftsman, as it is one of the state-of-the-art methods in geom-
etry refinement. We replaced our geometry refinement component
with Craftsman while keeping all other components unchanged
during retraining the city generation process.

Table 4 shows our method outperforms Craftsman across CE, DE,
NIQE, and BRISQUE metrics, demonstrating the superior quality
of our approach. Furthermore, we randomly select several building
geometries for visualization. As shown in Figure 5, our method

Satellite input Ours Craftsman

Figure 5: Qualitative comparison of geometry refinement
between our method and Craftsman. Given the same input,
our method generates richer architectural geometric details,
including windows, balconies, and other structural elements.

produces more detailed architectural features, including windows,
balconies, and other architectural details.

Table 4: Quantitative comparison of geometry refinement
between our method and Craftsman in city generation.

Method CE ↓ DE ↓ NIQE ↓ BRISQUE ↓
Craftsman 0.049 0.053 6.245 78.234
Ours 0.043 0.047 5.132 53.960

Effectiveness of Texture Generation. Our texture generation
approach is built upon the refined geometry. To evaluate its effec-
tiveness, we perform experiments by removing the cross-attention
mechanism between buildings (w/o cross-attention) and excluding
all conditional information 𝑐2 (w/o all condition). We evaluate the
texture generation quality using the NIQE and BRISQUE metrics.
Following DreamScene360 [47], we further employ CLIP Distance
and Q-Align to assess the semantic alignment between the gener-
ated textures and the input imagery.

Table 5 shows that our method outperforms the baseline in all
metrics, achieving superior texture quality and better alignment
with real-world details.

Table 5: Quantitative comparison of texture generation qual-
ity.

Method NIQE ↓ BRISQUE ↓ CLIP Dist ↓ Q-Align ↑
w/o condition 6.759 72.389 0.916 2.349
w/o cross-att 6.472 69.543 0.870 2.765
Ours 5.132 53.960 0.802 3.410
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