
MagicCity: Geometry-Aware 3D City Generation from Satellite Imagery with
Multi-View Consistency

Xingbo Yao1,∗ Xuanmin Wang3,∗ Hao Wu1,2,∗ Chengliang Ping1 Doudou Zhang1 Hui Xiong1,2,†

1Hong Kong University of Science and Technology (Guangzhou)
2Hong Kong University of Science and Technology

3Tianjin University

MAGIC CITY (a) Multiview images with city-level consistency

(c) Diverse style

(b) 3D Reconstruction

(e) Broad application scenarios(d) Consistent Geometry

Figure 1. Overview of MagicCity. Given satellite input, MagicCity generates (a) multi-view images with city-level consistency. (b) These
images are then fed into a robust reconstruction pipeline to generate a 3D city. Our approach achieves (c) diverse style generation while
maintaining (d) geometric consistency across views. (e) The proposed method has broad application scenarios, including 3D modeling
assets for games, urban simulation, and more.

Abstract

Directly generating 3D cities from satellite imagery opens
up new possibilities for gaming and mapping services.
However, this task remains challenging due to the limited
information in satellite views, making it difficult for exist-
ing methods to achieve both photorealistic textures and ge-
ometric accuracy. To address these challenges, we propose
MagicCity, a novel large-scale generative model for pho-
torealistic 3D city generation with geometric consistency.
Given a satellite image, our framework first extracts 3D
geometric information and encodes it alongside textural
features using a dual encoder. These features then guide
a multi-branch diffusion model to generate city-scale, ge-
ometrically consistent multi-view images. To further en-
hance texture consistency across different viewpoints, we
propose an Inter-Frame Cross Attention mechanism that
enables feature sharing across different frames. Addition-
ally, we incorporate a Hierarchical Geometric-Aware Mod-
ule and a Consistency Evaluator to improve overall scene
consistency. Finally, the generated images are fed into our
robust 3D reconstruction pipeline to produce high-visual

quality and geometrically consistent 3D cities. Moreover,
we contribute CityVista, a high-quality dataset compris-
ing 500 3D city scenes along with corresponding multi-
view images and satellite imagery to advance research in
3D city generation. Experimental results demonstrate that
MagicCity surpasses state-of-the-art methods in both geo-
metric consistency and visual quality. Our project page:
https://github.com/YaoXingbo/MagicCity

1. Introduction
3D city generation is driving innovation in gaming [16, 45],
urban simulation [32, 33], and mapping services [14, 46].
Directly generating 3D cities from satellite imagery offers
an efficient way to transform real-world environments into
detailed digital twins. This approach not only frees design-
ers from tedious manual tasks but also preserves the authen-
ticity of the real city. However, the generated 3D cities often
suffer from low texture quality or geometric inconsisten-
cies. Satellite imagery offers only a top-down view and is
missing crucial details such as building facades, street-level
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features, and architectural styles.
Existing approaches to city generation can generally be

divided into two main categories: geometry prior-based
methods [6, 19, 21, 22, 38–40] and image prior-based
methods [3, 5, 8, 9, 12, 17, 34–36, 41]. Geometry prior-
based methods first construct 3D city geometry from satel-
lite imagery by extracting semantic segmentation maps and
depth maps, then apply generative models for surface tex-
ture synthesis. This approach preserves geometric accu-
racy but struggles to produce high-quality textures for large
scenes. As a result, they can only generate limited style
variety and are often limited to smaller urban areas. Image-
prior-based methods leverage recent advances in diffusion
models to offer a promising alternative for city scene gener-
ation. They can produce high-fidelity textures using video
diffusion or multi-view diffusion models. However, these
frame-by-frame approaches lack 3D geometric constraints,
causing geometric inconsistencies across multi-views. This
problem becomes worse in city-scale scenes, where com-
plex architecture and spatial relationships makes it difficult
to maintain consistency.

To address the aforementioned challenges, we propose
MagicCity, an innovative framework that integrates the
strengths of both geometry prior-based and image prior-
based methods. Our method leverages geometric and tex-
tural priors from satellite imagery as controls to guide our
city-scale multi-view generative model in producing scene-
level, view-consistent images. These images are then fed
into a robust reconstruction pipeline to generate 3D cities
with high-fidelity textures and consistent geometry. As
shown in Figure 2, we first extract CLIP-based texture fea-
tures and construct 3D geometry from semantic and depth
maps, which are jointly encoded into embeddings by our
Dual Encoder (DE). The embeddings guide our City-Scale
Multi-View Diffusion (CMD) model to generate consistent
multiple views. We adopt a progressive generation strategy
where we first generate the key frames and then the remain-
ing frames. Each frame is assigned a consistency score to
quantify its cross-view consistency. Finally, these images
are used to optimize a robust 3D Gaussian Splatting pro-
cess, where their consistency scores guide the optimization
of Gaussian point colors across views. To support city gen-
eration, we introduce the CityVista dataset, which contains
500 city scenes with paired satellite and multi-view images.
Experiments show that MagicCity outperforms state-of-the-
art approaches. Our method generates more photorealistic
city scenes while maintaining strict geometric consistency
across multiple views.

The key contributions are summarized as:

• We introduce MagicCity, a novel framework to gener-
ate photorealistic 3D cities from satellite imagery while
maintaining scene-level geometric consistency.

• We propose a city-scale multi-view diffusion model that

generates 3D-consistent images by incorporating explicit
geometric constraints.

• We develop a robust 3D Gaussian Splatting strategy for
synthesizing detailed 3D reconstructions from generated
multi-view images.

• We present CityVista, a novel dataset consisting of 500
high-quality city scenes with paired with multi-view im-
ages and satellite images, to support research in 3D city
generation.

2. Related Works
Existing 3D city generation methods can be broadly cat-
egorized into geometry prior-based and image prior-based
approaches.

Geometry Prior-based Methods. These methods uti-
lize semantic maps and depth information from satellite
images as geometric references to construct 3D geomet-
ric structures, followed by the generation of surface tex-
tures using 3D-native generation models. InfiniCity [22]
pioneered this direction by constructing octree-based vox-
els and applying SPADE-based neural rendering. They
efficiently expanding the octree representation to support
large-scale scenes while ensuring spatially consistent tex-
tures for scalable and editable 3D city generation. City-
Dreamer [38] further refined this approach by decomposing
the scene into foreground buildings and background roads,
separately training a 3D Generative Adversarial Network
(GAN) on Google Earth data for each component. This
method significantly enhances the visual fidelity of gener-
ated buildings. Based on that, GaussianCity [39] integrates
a Gaussian Splatting framework, improving computational
efficiency and enabling real-time unbounded city genera-
tion. More recent methods, such as Sat2Scene [21], focus
on generating city street blocks from initial 3D structures
extracted from satellite images. Followed by employing a
3D diffusion model to color sparse point clouds and a 2D
diffusion model to synthesize skies. Similarly, GeoSpecific
[40] predicts ground-view images at given geolocations by
incorporating comprehensive satellite information, achiev-
ing a significant resolution boost.

Despite these advancements, these methods share com-
mon limitations in both style diversity and texture quality.
In contrast, our method achieves superior visual fidelity and
style diversity.

Image Prior-based Methods. Recent advances in im-
age and video diffusion models have opened new possi-
bilities for 3D content generation. Early works focused
on object-level generation through multi-view synthesis
[3, 34, 36] and view-consistent modeling [12, 13, 41],
but struggled with larger scene synthesis. More recent ap-
proaches have attempted to address scene-level generation.
CAT3D [9] proposes a two-stage framework that first gen-
erates consistent novel views through multi-view diffusion,
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Figure 2. Framework of MagicCity. (a) Given a satellite image as input, we first predict its texture descriptors from CLIP and 3D structure
from depth/segmentation maps and then encode these features through our Dual Encoder. (b) These encoded features are injected into the
City-scale Multi-view Diffusion model to generate photorealistic multi-view images with city-scale structural consistency. Subsequently,
we implement instance-level feature matching to evaluate consistency scores across generated images. (c) Finally, the generated multi-
view images are fed into a robust 3D Gaussian Splatting pipeline, where instance-level consistency scores guide the color initialization and
adaptive optimization of 3D Gaussian points across views.

followed by 3D reconstruction. DimensionX [35] intro-
duces a spatial-temporal decomposition strategy for video
generation and establishes 3D scenes through multi-loop
refinement. DreamScene [17] employs Formation Pattern
Sampling and progressive camera strategies to generate 3D-
consistent scenes. However, these methods are limited to
simple scenarios like single buildings or natural scenes,
and often produce results with noticeable synthetic arti-
facts. While works like MagicDrive [8] and Streetscape [5]
demonstrate impressive progress in generating high-quality
street-view videos of urban environments, their frame-by-
frame generation approach leads to geometric inconsisten-
cies across views, resulting in distorted 3D reconstruction
that deviates from real-world structure.

In contrast, our method incorporates geometric con-
straints into the multi-view generation process and designs
specific strategies to ensure city-level geometric consis-
tency across the generated views.

3. Methods
Our MagicCity follows a novel 3D-consistent framework
for 3D city generation. First, we initialize the scene struc-
ture by combining depth maps and semantic maps while ex-
tracting texture information from CLIP. These two modal-
ities are encoded into feature embeddings via our Dual
Encoder (Section 3.1). Next, these features are fed into
our City-scale Multi-view Diffusion model to generate 3D-
consistent images. We employ a progressive generation
strategy that first synthesizes critical key frames, followed
by the remaining frames. Each generated image is assigned
with a consistency score to quantify its cross-view con-

sistency (Section 3.2). Finally, the generated multi-view
frames undergo a robust 3D Gaussian Splatting process.
During this stage, the initial 3D structure from the first
stage initializes Gaussian point positions, while consistency
scores guide both color initialization and iterative optimiza-
tion of Gaussian points using the generated images.(Section
3.3).

3.1. Scene Initialization and Dual Encoding
Motivation. Prior works excel at generating photorealis-
tic videos of city scenes, but they struggle to maintain geo-
metric consistency across different views. To address this,
we leverage satellite data to initialize the 3D scene geome-
try, followed by encoding both the geometric structure and
satellite texture into embeddings using our designed Dual
Encoder. These embeddings serve as constraints to ensure
consistency in multi-view generation. The details are as fol-
lows:

3D Structure Generation. As shown in Figure 2, we
first process the satellite image I to obtain instance seg-
mentation S and depth estimation D. The 3D volume
V ∈ RH×W×D is then constructed by lifting each pixel
(i, j) from S to its corresponding 3D position according to
D, where each voxel v(x, y, z) stores its instance ID and
semantic class.

Dual Encoder. After obtaining the 3D volume from
satellite imagery, we design a Dual Encoder that processes
geometry and texture information into features separately:

Texture Branch: We employ CLIP [28] to extract textual
descriptions T from I , capturing architectural characteris-
tics such as building styles, materials, and regional features.



Through the proposed encoder ϕtex, these semantic tokens
T ∈ RK are transformed into texture features ftex ∈ RD

that guide consistent texture generation across views.
Geometric Branch: To encode geometric properties,

we represent the 3D volume using view-specific features.
Specifically, we render the 3D volume V from the input tra-
jectory, which consists of N camera positions {vi}Ni=1. The
rendering process can be formulated as:

{Si, Di}Ni=1 = R(V, {vi}Ni=1) (1)

where R denotes the rendering function, vi represents the
i-th camera parameters, Si and Di are the corresponding
instance segmentation and depth maps. Notably, if no pre-
defined camera inputs are available, the viewpoints are uni-
formly sampled along a circular trajectory. For each view-
point i, we concatenate Si, Di with camera parameters vi
into Fi ∈ RH×W×3. These features are then processed
through the proposed geometric encoder ϕgeo to obtain per-
view geometric features f i

geo ∈ RD that ensure structural
consistency during generation.

3.2. City-scale Multi-view Generation with Consis-
tency Evaluation

Motivation. City-scale multi-view generation is more chal-
lenging than object-level tasks due to the extensive spatial
range and complex interactions between multiple buildings
and roads [5, 38]. To address these challenges, we propose
the City-scale Multi-view Diffusion (CMD) that generates
consistent multiple views through a multi-branch diffusion
architecture. As shown in Figure 2, each branch follows the
LDM framework [30] but incorporates three key modifica-
tions for large-scale scene generation: (1) Dual embeddings
injection at each UNet block, (2) Inter-Frame Consistency
Attention (IFCA) between branches, and (3) Hierarchical
Geometric Aware module in middle layers. Furthermore,
we adopt a progressive generation strategy with consistency
evaluation, where key frames are first generated and evalu-
ated by our proposed consistency evaluator before the par-
allel generation of the remaining frames. The details are as
follows:

Network Architecture. Our CMD model first generates
multiple key frames in parallel. Taking the i-th frame as an
example, let Fi denote its feature map and {Fr} represent
features of other frames. Within each block, we inject dual-
encoded constraints through decoupled cross attention:

F̃i = Fi +A(Fi, ftex) +A(Fi, f
i
geo) (2)

where A(·, ·) represents the cross-attention operation
that enables dynamic feature selection from texture and ge-
ometric constraints, respectively. Inspired by IP-Adapter
[43], we adopt an asymmetric training strategy: the geo-
metric constraint branch is trainable, while the texture con-

straint branch remains frozen. This design stabilizes train-
ing by preserving structural priors while allowing the model
to adaptively learn texture variations.

To further maintain consistency across views, we pro-
pose the Inter-Frame Consistency Attention (IFCA) mod-
ule that operates across multiple frames. The inter-frame
feature aggregation is computed as:

Mi =
∑
l ̸=i

softmax(WqF̃i ·WkF̃
T
r ) ·WvF̃r (3)

where WQF̃i acts as the query, encoding the content of
the current frame i, while WK F̃r and WV F̃r serve as the
key and value from a neighboring frame r. The dot product
WqF̃i ·WkF̃

T
r measures the similarity between correspond-

ing regions across frames, and the softmax operation deter-
mines how much information from frame r should be trans-
ferred to frame i. By aggregating relevant features from
adjacent frames, IFCA reduces temporal flickering and im-
proves coherence in the generated views.

Additionally, we introduce a Hierarchical Geometric-
Aware Attention (HGA) module in the middle blocks with
dual attention paths: a scene-level path (4 heads × 128 dim)
for global layout and an object-level path (8 heads × 64
dim) for local structural details.

The training objective is defined as:

L := E{zi
t},εi,t,c

[
N∑
i=1

∥εi − εiθ({zit}, t, τθ(c)∥22

]
(4)

where {zit} denotes the noisy latents of N views at
timestep t, εi ∼ N (0, 1) is the sampled noise, and τθ(c)
encodes our consistency constrains into diffusion condition.

Progressive Generation with Consistency Evaluation.
Similar to CAT3D [9], we adopt an efficient progressive
generation strategy that first synthesizes key frames at an-
chor viewpoints and then generates the remaining views.
Unlike previous works, a consistency evaluator is intro-
duced to compute the consistency score of each image. The
image generation process is iteratively refined until it meets
a predefined threshold. Consistency scores are computed
based on instance-level feature matching. Specifically, for
each instance i in frame k, its consistency score Ck

i is com-
puted as:

Ck
i =

1

|Vi|
∑
j∈Vi

cos(fk
i , f

j
i ) (5)

where Vi denotes the set of views containing instance i,
fk
i represents the average DINO [27] features of instance
i in frame k, and cos(·, ·) computes cosine similarity. The
overall consistency score for frame k is calculated as:

Ck =
∑
i

wiC
k
i , wi =

Ai∑
j Aj

(6)



where Ai is the pixel area of instance i, serving as a
natural weight for the instance’s contribution to the over-
all consistency. We proceed to generate intermediate views
only when the consistency scores of all key frames exceed a
threshold τ . Additionally, all remaining images are also as-
signed a consistency score to evaluate their cross-view con-
sistency.

3.3. Consistency Score-guided 3D Reconstruction
Motivation. Our multi-view generation framework pro-
duces high-quality views that maintain scene-level geomet-
ric consistency. However, even state-of-the-art video gen-
eration models [2, 42, 44, 47] cannot ensure perfect pixel-
level texture consistency. 3D Gaussian Splatting (GS) [15]
relies on feature matching for point cloud initialization and
refines Gaussian points through iterative multi-view render-
ing, pixel-level inconsistencies in the input views can lead
to sparse or failed initialization and noticeable artifacts dur-
ing optimization. To address this, we propose a robust 3D
Gaussian splatting pipeline that leverages the consistency
score to guide the reconstruction process.

Point Cloud Initialization. Point initialization in GS
requires accurate 3D point positions and colors. For a 3D
point p, its position is initialized using the 3D structure from
Section 3.1. For color, the RGB value may vary across dif-
ferent views containing p. To address this, we use the con-
sistency scores and place more weight on views with higher
consistency scores during the color initialization process.
Formally, the initial color of point cp is computed as fol-
lows:

cp =

∑
k(C

k
i · ck)∑

k C
k
i

(7)

where ck is the color from view k, and Ck
i is the consistency

score of instance i in view k.
Adaptive Optimization Strategy. Similarly, we use the

consistency scores of multi-view images to guide the opti-
mization of Gaussian points. Views with higher consistency
scores are given more weight during the optimization pro-
cess. Formally, for each point p, the reconstruction loss is
weighted as:

Lp = Lp
render · Cp (8)

where Lp
render is the standard rendering loss for point p, and

Cp is the consistency score of the current view. This allows
us to reconstruct high-quality 3D cities from the generated
views.

4. Experiments
4.1. Dataset
CityVista Dataset. To the best of our knowledge, there
is currently no dataset that provides high-quality 3D cities

with paired multi-view images and satellite imagery. To
bridge this gap, we introduce CityVista dataset, comprising
500 city scenes from two sources: (1) Since the Matrixcity
dataset [20] provides high-quality drone imagery of urban
environments, we perform reconstruction and split them
into 300 distinct city scenes; (2) We collect approximately
2,000 3D assets from Sketchfab* and CitySample†, normal-
ize their scales, and assemble them into 200 synthetic city
scenes using methods proposed by CityCraft [7].

For all 500 scenes, we render images along diverse cam-
era trajectories including orbital paths (radius: 50–500m,
altitude: 50–200m), forward-facing circles, and exploratory
spline paths. Each scene contains 60 high-resolution
(1920×1080) images with corresponding satellite views.
Moreover, we render satellite viewpoints for every scene
to provide paired aerial imagery. Finally, we provide com-
prehensive annotations for all multi-view images, includ-
ing instance segmentation for buildings, roads, vegetation,
and water bodies, as well as the paired depth maps. The
final dataset contains 30,000 views spanning diverse archi-
tectural styles and city layouts.

OSM Dataset. Following CityDreamer [38], we also
utilize the OpenStreetMap (OSM) dataset‡ for additional
testing and evaluation. The OSM dataset contains satel-
lite imagery from 80 cities worldwide, along with corre-
sponding semantic maps providing five-category classifica-
tion (roads, buildings, green lands, construction sites, and
water areas) and height fields derived from OSM data. This
large-scale dataset serves as an extended evaluation bench-
mark for our method.

4.2. Implementation Details
Our generative model builds upon the Latent Diffusion
Model (LDM) framework [30]. Following Section 3.2, we
adapt it for city generation. For training, the dataset is re-
sized to 1280× 720 resolution, which improves training ef-
ficiency while maintaining good visual quality. We use the
AdamW optimizer with a learning rate of 1e−5 on 4 A800
GPUs. We first fine-tuned the model on single-view images.
Then, we froze the backbone and trained the CMD blocks
using multi-view images. The consistency threshold τ of
our consistency evaluation process is set to 0.85, and images
are iteratively generated until this threshold is satisfied. For
robust 3D reconstruction, we apply a 0.1× standard learn-
ing rate for low-confidence regions during optimization.

4.3. Evaluation Protocols
We randomly select 500 satellite images from the test set for
evaluation. To ensure fair testing, we apply the same pre-
processing method in Sec. 3.1 to obtain semantic maps and

*https://sketchfab.com
†https://www.unrealengine.com/marketplace/en-

US/product/city-sample
‡https://openstreetmap.org
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Figure 3. Qualitative comparison. Our method produces higher-quality 3D cities with better consistency compared with the baselines.
We strongly recommend zooming in to examine the detailed differences.

Method FID ↓ KID ↓ NIQE ↓ BRISQUE ↓ DE ↓ CE ↓
CityDreamer [38] 155.390 0.251±0.012 8.632±0.709 86.773±11.492 0.157 0.083
DimensionX [35] 126.890 0.175±0.006 6.595±0.425 70.207±7.157 - -
DreamScene [17] 104.627 0.125±0.002 6.018±0.671 30.311±11.732 0.223 0.371
Ours 86.096 0.087±0.001 4.553±0.412 28.018±5.634 0.137 0.072

Table 1. Quantitative comparison. MagicCity outperforms the baselines across all metrics, including visual quality and geometric
consistency. Lower values indicate better performance.

Dataset Images Resolution View 3D mod. Anno.

KITTI [10] 15k 1242 ×375 street × sem.
OmniCity [18] 6k 512 ×512 street/sate. × ins./plane
GoogleEarth [38] 24k 960 ×540 drone × sem./ins.

HoliCity [49] 108k 512 ×512 street ✓ sem./plane
UrbanScene3D [23] 6.1k 800 ×450 drone ✓ ins.
Ours 30k 1920 ×1080 drone/sate. ✓ sem./ins.

Table 2. Comparison of MagicCity with city-related datasets.
“sate.”, “sem.”, “plane”, and “ins.” denote satellite, semantic seg-
mentation, plane segmentation, and instance segmentation respec-
tively. “Anno.”, “3D mod.” represents the annotation types and the
availability of 3D models respectively.

depth maps for all approaches. For each scene, after gen-
erating 3D cities using all methods, we render 60 frames
with a resolution of 1280×720 under diverse camera tra-
jectories (i.e., circular, spiral). Subsequently, we randomly
select frames for visualization and quantitative evaluation.

Image Quality Metrics. Following previous works
[21, 38, 48], we employ Fréchet Inception Distance (FID)
[11] and Kernel Inception Distance (KID) [1] to assess
the distribution similarity between generated and real city
scenes. FID compares the mean and covariance of fea-
tures extracted from an Inception network, while KID uses
a polynomial kernel to compare distributions. These met-
rics are computed between 10k randomly sampled gener-
ated views and 10k real street-view images from the dataset.
Additionally, we use no-reference image quality metrics



BRISQUE [25] and NIQE [26] to evaluate the naturalness
and perceptual quality of generated views. BRISQUE mea-
sures naturalness by analyzing spatial features, and NIQE
evaluates image naturalness based on statistical properties.
We evaluate BRISQUE and NIQE on 10k randomly sam-
pled rendered images.

Geometric Consistency Metrics. Following City-
Dreamer [38], we evaluate geometric consistency using two
metrics. Camera Error (CE) measures the scale-invariant
L2 distance between reconstructed and ground-truth cam-
era poses, quantifying the difference between the infer-
ence camera trajectory and the estimated trajectory from
COLMAP [31]. Depth Error (DE) evaluates 3D geometry
accuracy by computing the normalized L2 distance between
predicted and pseudo ground-truth depth maps. Inspired by
EG3D [4], we generate pseudo ground-truth using a pre-
trained depth estimation model [29]. Both the predicted and
reference depths are obtained by applying the same model
to rendered RGB images. To eliminate scale ambiguity, the
depth maps are normalized to zero mean and unit variance
before computing DE.

4.4. Main Results
Comparison Methods. We evaluate our approach against
the recent state-of-the-art methods: DreamScene [17], City-
Dreamer [38], and DimensionX [35]. For fair comparison,
all methods are retrained on the CityVista dataset except Di-
mensionX, whose code has not been available.

Qualitative Comparison. Figure 3 shows the render
results from diffusion models, both DreamScene, City-
Dreamer, and our method demonstrate strong geometric
consistency due to their geometry-aware generation pro-
cesses. In contrast, DimensionX, which relies on control-
lable video diffusion without explicit geometric constraints,
exhibits noticeable distortions in building structures and
road layouts.

Regarding visual quality, our method produces realistic
textures for both building facades and ground details. The
magnified view demonstrates that our texture details out-
perform the comparison methods. In contrast, CityDreamer
shows limited style diversity in building colors and road
textures. DimensionX generates scenes with greater style
variation than CityDreamer but exhibits significant distor-
tion and defects in the details, as shown in the magnified
view. Additionally, DreamScene produces results with pro-
nounced synthetic artifacts despite also generating diverse
styles.

Quantitative Comparison. Table 1 presents the quanti-
tative evaluation results. Our method demonstrates signif-
icant improvements in distribution metrics (FID and KID),
indicating better alignment with real city scenes. This is
further supported by our results shown in Figure 3. The
superior performance in no-reference metrics (NIQE and

BRISQUE) validates the enhanced perceptual quality of our
results. Furthermore, our method achieves the lowest DE
and CE scores, confirming our ability in maintaining geo-
metric accuracy and cross-view consistency.

4.5. Ablation Study
We further conduct ablative experiments to validate the ef-
fectiveness of the three components utilized in our method.

Effectiveness of DE. The Dual Encoder (DE) encodes
3D geometric features and textural features into embed-
dings, and injects them into our generative model through
cross-attention mechanisms. We compare our approach
with two baselines: removing the encoder entirely and di-
rectly concatenating the two embeddings instead of using
cross-attention. All other components remain unchanged
during retraining. Results are shown in Table 3, where our
DE achieves better performance across all metrics. This
is especially evident on geometric metrics DE and CE,
demonstrating the effectiveness of our approach in preserv-
ing geometric accuracy.

Effectiveness of CMD. Our City-Scale Multi-view
Diffusion (CMD) model incorporates three key compo-
nents: Inter-Frame Consistency Attention (IFCA) for en-
abling block-level cross-attention between different diffu-
sion branches during parallel multi-view image generation.
Hierarchical Geometric Aware attention (HGA) for captur-
ing global-local relationships in the middle layers of the
UNet, and Consistency Evaluation strategy that calculates
a consistency score for each image, continuing the iterative
generation process only until a threshold is reached. We
evaluate the contribution of each component by removing
them individually while keeping other parts unchanged. As
shown in Table 4, removing each component leads to de-
graded performance, particularly in geometric consistency
metrics (DE and CE). This demonstrates the effectiveness
of our proposed approach in maintaining geometric consis-
tency and enhancing texture quality.

Comparison on 3D Reconstruction. To validate the ef-
fectiveness of our Consistency Score-guided reconstruction
strategy (CSR), we compare it with ReconFusion [37], a
state-of-the-art method for robust 3D reconstruction from
generated images. As shown in Figure 4, our method
achieves more accurate 3D geometry with fewer artifacts,
particularly in regions with pixel-level color inconsisten-
cies. All results are visualized using 3D Gaussian Splatting
(3DGS).

4.6. Multi-view Generation
To further demonstrate the capability in generating large-
scale consistent multi-view of our MagicCity, we conduct
additional experiments on 360° scene synthesis. We com-
pare our approach with recent state-of-the-art methods in
multi-view generation (Wonder3D [24]), novel view syn-



Method FID↓ NIQE↓ DE↓ CE↓
Baseline (w/o all) 95.23 6.124 0.315 0.152
Direct Concat 88.12 5.235 0.189 0.092
Ours (DE) 86.09 4.552 0.137 0.071

Table 3. Ablation study on the effectiveness of Dual Encoder.
The best values are highlighted in blod. Note that “w/o all” de-
notes the removal of both geometric and textural embeddings from
our encoder.

Method FID↓ NIQE↓ DE↓ CE↓
w/o IFCA 89.23 4.892 0.186 0.098
w/o HGA 87.56 4.763 0.159 0.085
w/o CE 88.12 4.835 0.192 0.102
Ours 86.09 4.552 0.137 0.071

Table 4. Ablation study on the effectiveness of CMD. The best
values are highlighted in blod. Note that “IFCA” denotes Inter-
Frame Consistency Attention, “HGA” represents the Hierarchical
Geometric Aware module, and “CE” refers to Consistency Evalu-
ation.

OursReconFusion

Figure 4. Comparison on 3D reconstruction results. Our
method (CSR) produces more robust 3D reconstructions with
fewer artifacts compared to the baseline ReconFusion. Note that
the input views are in drone-view perspective, which are generated
from our multi-view diffusion model.

thesis (ViewCraft[44]), and camera-controlled video gener-
ation (DimensionX[35]). To ensure consistent input across
all methods, we randomly select from drone-view perspec-
tives in our dataset. For the baseline methods, we used the
default parameters from their open-source implementations.

As shown in Figure 5, given the same input view, our
method maintains superior scene-level consistency across
the novel viewpoints. The generated views demonstrate ac-
curate building structures and consistent texture patterns
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Figure 5. Multi-view generation comparison. Our method main-
tains consistent structure and texture across viewpoints, outper-
forming the baseline methods.

throughout the sequence. In contrast, baseline methods
show notable limitations in the regions marked by the red
boxes. Specifically, Wonder3D fails to preserve building
proportions and exhibits significant distortion of building
geometry in challenging viewpoints. DimensionX performs
relatively well in maintaining building geometry but strug-
gles with large-angle changes, where facades become dis-
torted. In ViewCrafter, buildings also become distorted with
camera rotation, resulting in the loss of architectural fea-
tures across different angles.

5. Conclusion

In this paper, we propose a large-scale generative frame-
work for 3D city generation. Comparing to existing meth-
ods that struggle to simultaneously achieve geometric con-
sistency and photorealistic textures, MagicCity ensures
high-fidelity city scene synthesis with multi-view geometric
consistency. This is achieved through our dual encoder ar-
chitecture, multi-branch diffusion model, and robust recon-
struction strategy. Furthermore, we introduce the CityVista
dataset, comprising 500 city scenes with paired multi-view
images and satellite imagery to support 3D generation re-
search. Experimental results demonstrate that our approach
surpasses state-of-the-art methods in both visual realism
and structural accuracy.
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Matthias Nießner. Viewdiff: 3d-consistent image generation
with text-to-image models. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition,
pages 5043–5052, 2024. 2

[13] Hanzhe Hu, Zhizhuo Zhou, Varun Jampani, and Shubham
Tulsiani. Mvd-fusion: Single-view 3d via depth-consistent
multi-view generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9698–9707, 2024. 2

[14] Junya Kanda, Yi He, Haoran Xie, and Kazunori Miyata.
Sketch2tooncity: sketch-based city generation using neu-
rosymbolic model. In International Workshop on Advanced
Imaging Technology (IWAIT) 2024, pages 431–436. SPIE,
2024. 1

[15] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1–14, 2023. 5

[16] Joon-Seok Kim, Hamdi Kavak, and Andrew Crooks. Proce-
dural city generation beyond game development. SIGSPA-
TIAL Special, 10(2):34–41, 2018. 1

[17] Haoran Li, Haolin Shi, Wenli Zhang, Wenjun Wu, Yong
Liao, Lin Wang, Lik-hang Lee, and Peng Yuan Zhou.
Dreamscene: 3d gaussian-based text-to-3d scene generation
via formation pattern sampling. In European Conference on
Computer Vision, pages 214–230. Springer, 2024. 2, 3, 6, 7

[18] Weijia Li, Yawen Lai, Linning Xu, Yuanbo Xiangli, Jinhua
Yu, Conghui He, Gui-Song Xia, and Dahua Lin. Omnicity:
Omnipotent city understanding with multi-level and multi-
view images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17397–
17407, 2023. 6

[19] Weijia Li, Jun He, Junyan Ye, Huaping Zhong, Zhi-
meng Zheng, Zilong Huang, Dahua Lin, and Conghui He.
Crossviewdiff: A cross-view diffusion model for satellite-
to-street view synthesis. arXiv preprint arXiv:2408.14765,
2024. 2

[20] Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhen-
zhi Wang, Dahua Lin, and Bo Dai. Matrixcity: A large-scale
city dataset for city-scale neural rendering and beyond. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3205–3215, 2023. 5

[21] Zuoyue Li, Zhenqiang Li, Zhaopeng Cui, Marc Pollefeys,
and Martin R Oswald. Sat2scene: 3d urban scene genera-
tion from satellite images with diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7141–7150, 2024. 2, 6

[22] Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei
Chai, Aliaksandr Siarohin, Ming-Hsuan Yang, and Sergey
Tulyakov. Infinicity: Infinite-scale city synthesis. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 22808–22818, 2023. 2

[23] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and
Hui Huang. Capturing, reconstructing, and simulating: the
urbanscene3d dataset. In European Conference on Computer
Vision, pages 93–109. Springer, 2022. 6

[24] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,
Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,
Marc Habermann, Christian Theobalt, et al. Wonder3d: Sin-



gle image to 3d using cross-domain diffusion. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9970–9980, 2024. 7

[25] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad
Bovik. No-reference image quality assessment in the spatial
domain. IEEE Transactions on image processing, 21(12):
4695–4708, 2012. 7

[26] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-
ing a “completely blind” image quality analyzer. IEEE Sig-
nal processing letters, 20(3):209–212, 2012. 7

[27] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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